
Is It Safe to Uplift This Patch?
An Empirical Study on Mozilla Firefox

Marco Castelluccio
Mozilla Corporation, United Kingdom

DIETI, Università Federico II, Italy
mcastelluccio@mozilla.com

Le An and Foutse Khomh
SWAT Lab

Polytechnique Montréal, QC, Canada
{le.an, foutse.khomh}@polymtl.ca

Abstract—In rapid release development processes, patches that
fix critical issues, or implement high-value features are often
promoted directly from the development channel to a stabilization
channel, potentially skipping one or more stabilization channels.
This practice is called patch uplift. Patch uplift is risky, because
patches that are rushed through the stabilization phase can end
up introducing regressions in the code. This paper examines
patch uplift operations at Mozilla, with the aim to identify the
characteristics of uplifted patches that introduce regressions.
Through statistical and manual analyses, we quantitatively and
qualitatively investigate the reasons behind patch uplift deci-
sions and the characteristics of uplifted patches that introduced
regressions. Additionally, we interviewed three Mozilla release
managers to understand organizational factors that affect patch
uplift decisions and outcomes. Results show that most patches
are uplifted because of a wrong functionality or a crash. Uplifted
patches that lead to faults tend to have larger patch size, and
most of the faults are due to semantic or memory errors in the
patches. Also, release managers are more inclined to accept patch
uplift requests that concern certain specific components, and–or
that are submitted by certain specific developers.

Index Terms—Patch uplift, Urgent update, Mining software
repositories, Release engineering

I. INTRODUCTION

The advent of continuous delivery and rapid release prac-
tices have significantly reduced the amount of stabilization
time available for new features, forcing companies to resort
to innovative techniques to ensure that important features are
released to the public, in a timely manner and with a good
quality. To cope with short release cycles, Mozilla has re-
organized its release process around four channels: a devel-
opment channel named Nightly, two stabilization channels
(Aurora and Beta), and a main Release channel. Features
corresponding to a new release are developed on the Nightly
channel over a period of six weeks. After that, the code is
transferred to Aurora, where it is tested by Mozilla developers
and contributors, for a period of six weeks, and then to Beta
where it is tested by a selected group of external users. Finally,
mature Beta features are imported into the main Release chan-
nel and delivered to end users. This pipelined process allows
Mozilla to avoid mixing the development of new features
with the stabilization process, which is particularly important
given that integration operations are unpredictable [1], and can
significantly delay a release process, if not enough time is
allowed for stabilization. However, this well organized release

process is frequently subverted by urgent patches, implement-
ing high-value features or critical fixes, that cannot wait for
the next release train. These features and fixes are directly
promoted from the development channel to stable channels
(i.e., Aurora, Beta, and main Release), a practice called patch
uplift. Patch uplift is risky because the time allowed for the
stabilization of uplifted patches is reduced by six weeks for
each skipped channel. Therefore, it is important to carefully
pick the patches that are uplifted and ensure that developers
scrutinize them properly, to reduce the risk of regressions.
There are a set of rules in place at Mozilla to govern this
uplift process. One of these rules is that patches uplifted to
the Beta channel should be (1) ideally reproducible by the
QA team, so that they can be verified; (2) should have been
verified on Aurora/Nightly first; and (3) should not contain
string changes (i.e., changes in the text which is visible to
users). However, despite these rules, multiple uplifted patches
still introduce regressions in the code. Hence, it is unclear if–
and–how the rules are enforced at Mozilla and why certain
uplifted patches introduce post-release bugs.

In this paper, we conduct a series of quantitative and
qualitative analyses to understand the decision making process
of patch uplift at Mozilla and the characteristics of uplifted
patches that introduce regressions. Overall, we analyze 33,664
issue reports (corresponding to 7,267 uplift requests) in 17
versions of Firefox over a period of two years and answer the
following research questions:

RQ1: What are the characteristics of patches that are
uplifted?

We observe that most patches are uplifted to resolve wrong
functionalities or crashes. Rejected uplift requests required
longer decision time than accepted requests. We attribute
this difference to the high complexity of these rejected
patches (since complex patches require longer time for
risk assessment). Last but not least, release managers tend
to trust patches that concern certain specific components,
and–or that are submitted by certain specific developers.

RQ2: What are the characteristics of uplifted patches that
introduced faults in the system?

From our analysis, we observe that uplifted patches that
lead to faults tend to have larger patch size; suggesting
that developers and release managers need to carefully

ar
X

iv
:1

70
9.

08
85

2v
1

 [
cs

.S
E

]
 2

6
Se

p
20

17

review patch candidates for uplift with a large amount
of changes, before allowing for their uplift. Most faulty
uplifts are due to semantic or memory-related errors. We
also observed that patches related to certain components
and–or submitted by certain developers are more likely to
cause faults.

The remainder of this paper is organized as follows.
Section II provides background information about patch uplift.
Section III describes the design of our case study. Section IV
presents the results of the case study, and Section V elaborates
on the implications of these results. Section VI discusses
threats to the validity of this study. Section VII summarizes
related works, and Section VIII concludes the paper.

II. MOZILLA PATCH UPLIFT PROCESS

This section describes the Mozilla patch uplift process and
the rules governing this process.

Firefox follows a pipelined release process [2], with four
release channels (Nightly, Aurora, Beta, and Release). New
feature work is done on the Nightly channel, while Aurora and
Beta serve as stabilization channels, and the Release channel
is used to deliver the software to end users. Every six weeks,
there is a merge day, when the code from a less stable channel
flows into a more stable one (e.g., the Nightly code is moved
in the Aurora repository). Most of the development work
is performed in the Nightly channel, where patches can be
committed after a normal review process. For the stabilization
channels, a different process for committing patches has been
put in place (i.e., patch uplift), to keep the channels as stable
as possible (as code committed to Aurora and Beta is closer
to be released to users). Patches with important features or
severe fault fixes that cannot wait for the entire process are
promoted directly from the development channel to one of
the stable channels, skipping the stabilization phase on one or
more channels.

The lifecycle of an uplifted patch can be summarized as
follows: developers write a patch, which gets reviewed by
one or more reviewers. After a successful review, the patch
is committed to the Nightly channel. If developers (or other
stakeholders) believe that the patch is particularly important
(e.g., it fixes a frequent crash, or a performance issue), they
can ask for approval to uplift the patch to one (or more) of
the stable channels, i.e., Aurora, Beta, or Release.

Release managers (who are independent and different from
reviewers) are responsible for deciding which patches can be
uplifted. They can either accept or reject the patch uplift
request, after a careful consideration of the risks involved.

The more a channel is stable, the higher is the bar for
approval of uplift requests. Below we present an excerpt of
the rules in place at Mozilla on the different channels.
Aurora: Uplifts to the Aurora channel are less critical, as they
still have considerable time for stabilization. The rules are not
strict in this case: no new features are accepted; no disruptive
refactorings; no massive code changes; no string changes,
unless the localization team is aware and has approved; they
must be accompanied, if possible, by automated tests.

Beta: Uplifts to the Beta channel are more critical, as they have
less time for stabilization. In addition to the rules outlined for
Aurora, the changes uplifted to the Beta channel should be
(1) ideally reproducible by QA, so that they can be verified;
(2) they should have been verified on Aurora/Nightly first; and
should not contain (3) changes to the user-visible strings in the
application (as those require a very high effort and time to be
localized, since Mozilla relies on volunteer contributors). The
uplifted changes can be proven performance improvements,
fixes to important crashes, fixes for recent regressions. The
closer to the release date, the stricter the release managers
should be in enforcing the rules.
Release: Uplifts to the Release channel are generally discour-
aged, as they require a new version to be built and released to
users. Possible uplifts are fixes for major top crashes, security
issues, functional regressions with a very broad impact.

Once a patch is accepted for uplift, Tree Sheriffs [3] (i.e.,
engineers responsible for supporting developers in committing
patches and ensuring that the automated tests are not broken
after commits, monitoring intermittent failures and backing out
patches in case of test failures) or the developers themselves
can commit it to the stabilization channel(s) for which the
patch was approved.

III. CASE STUDY DESIGN

In this section, we describe the data collection and analysis
approaches that we use to answer our two research questions.

A. Data Collection

We collect, from the Mozilla issue tracking system
(Bugzilla), all issues marked as resolved or verified in the
Firefox and Core products between July 2014 (release date of
Firefox 31.0) and August 2016 (release date of Firefox 48.0).
In total, there are 35,826 issue reports in our dataset.

Mozilla developers use customized Bugzilla flags to
request for patch uplifts. These flags have the form
approval-mozilla-CHANNEL, where CHANNEL can be
Aurora, Beta, or Release. The postfix of the flag is set to a
question mark (?) when a developer asks for an uplift, to a
minus sign (-) if the release manager rejects the uplift, and
to a plus sign (+) if the release manager approves the uplift.
We rely on these flags to identify uplifted patches. At Mozilla,
release managers usually inspect all patches in an issue report
before deciding whether they can be uplifted together. Thus,
in this work, we consider uplift characteristics at the issue
level. If an issue contains multiple patches, we bundle the
patches together. To study the patch uplift process, we need
to consider a period of time during which the practice was well
established at Mozilla. To decide on this period, we computed
the amount of patches that were uplifted each month, over our
initial period of July 2014 to August 2016. Figure 1 shows the
distribution of the number of uplifts in three Firefox’s release
channels during this period. We do not consider uplifts that
concern the “Pocket” component, as the inclusion of Pocket
(which is a third-party add-on) in Firefox, a one-time event,
might introduce noise in our data. In Figure 1, each time point

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●
●

●

●

●
●

0

50

100

150

200

250

Ju
l 2

01
4

Aug
 20

14

Sep
 20

14

Oct
20

14

Nov
 20

14

Dec
 20

14

Ja
n 2

01
5

Feb
 20

15

Mar
 20

15

Apr
 20

15

May
 20

15

Ju
n 2

01
5

Ju
l 2

01
5

Aug
 20

15

Sep
 20

15

Oct
20

15

Nov
 20

15

Dec
 20

15

Ja
n 2

01
6

Feb
 20

16

Mar
 20

16

Apr
 20

16

May
 20

16

Ju
n 2

01
6

Ju
l 2

01
6

Aug
 20

16

Periods Removed Selected

Channel ● aurora beta release

Figure 1: Number of uplifts during each month from July 2014
to August 2016. Periods with low number of uplifts or not
covering all the three channels are removed.

Version Control
System

(Mercurial)

Quantitative &
qualitative
analyses

RQ1

RQ2

Bug Repository
(Bugzilla)

Source code metrics

Extract patches

Commit logs

Bug reports

Identify fault-
related issues

Identify fault-
inducing patches

Identify uplifted
reports

Developer &
sentiment

metrics

bu
g

co
m

m
it

m
ap

pi
ng

Figure 2: Overview of our data processing approach.

represents a period of one month (we can see that the Release
channel did not receive any uplift in May and November
2015). Figure 1 shows that the number of uplifted patches
increased from July 2014 to August 2014 and then became
stable from September 2014 to August 2016. Based on this
distribution, we selected the period between September 2014
and August 2016, for our study. In other words, we limited our
dataset to only issue reports and commits that occurred within
this period. Between September 2014 and August 2016, we
study in total 33,664 issue reports, in which there are 7,267
uplift requests: 285 to Release, 2,614 to Beta, and 4,368 to
Aurora.

B. Data processing

Figure 2 shows a general overview of our approach. We
describe each step of the approach below. The corresponding
data and scripts are available online at: https://github.com/
swatlab/uplift-analysis.

1) Identification of Fault-related Issues: Mozilla uses
Bugzilla to manage and track its issues. All types of issues,
whether they are faults or new features, are managed in
this system. Unlike JIRA [4], which offers the possibility
to distinguish between issues using a tag, Bugzilla does not
provide issue type information. Therefore, our first processing
task is to differentiate issues that are related to faults, from new
feature requests or improvements. To automatically identify
fault-related issues, we use a keyword-based heuristic to search
information in the title, description, flags, and user comments
of each issue report. Our list of keywords includes: crash,
regression, failure, leak, steps to reproduce (STR), and hang.
The full list is available at: https://github.com/swatlab/uplift-
analysis.

To ensure the accuracy of our detection on fault-related
issues, we manually validated a sample of our results. From a
total of 33,664 issue reports, we randomly selected a sample of

380 issue reports, which corresponds to a confidence level of
95% and a confidence interval of 5%. The first and the second
authors read each of the 380 issue reports independently and
classified them into fault-related and other categories. We then
compared their classification results and observed that 41 issue
reports were classified into different categories by the two
authors. To resolve these discrepancies, we created an online
document for the 41 issues; allowing all of the authors to
comment and discuss the issues. After this round, a consensus
was reached for 35 out of the 41 issues. For the remaining 6
issues, we organized a meeting and discussed the classification
of each of them until a consensus was found. The result of our
manual classification shows that our keyword-based heuristic
achieves a precision of 87.3% and a recall of 78.2%, when
classifying issues into fault-related and other categories.

2) Identification of Fault-inducing Patches: We use the SZZ
algorithm [5] to identify patches (these patches could be fault-
fixing patches or patches related to features or improvements)
that introduced faults in the system. First, we used Fischer
et al.’s heuristics [6] to map each studied issue to its cor-
responding patch(es) (i.e., commits). This heuristic consists
in looking for issue IDs in commit messages using regular
expressions. Next, for each fault-related issue, we use the
following Mercurial command to extract the list of files that
were changed to fix the issue:
hg log --template {commit},{file_mods},{file_dels}
In this step, we only consider modified and deleted lines, since
added lines could not have been changed by prior commits.
We denote an issue’s fault-fixing file by Ffix. Then, for
each changed file ffix | ffix ∈ Ffix, we use Mercurial’s
annotate command as follow to check which prior commits
changed the lines that were modified by the fault-fixing
commits. The SZZ algorithm assumes that the fault is located
in these lines.
hg annotate commitˆ -r f_fix -c -l -w -b -B

We refer to the obtained commits as fault-inducing candidates.
Finally, we examine whether a fault-inducing candidate was
submitted before the creation date of its corresponding fault-
related issue report. If so, we consider the candidate to be
a fault-inducing commit, and its related issue to be a fault-
inducing issue.

3) Mining Issue Reports: We mine several kinds of metrics
from Bugzilla issue reports: information about the review
process (e.g., how long a review took, how many reviewers
inspected a patch), information about the uplift process (e.g.,
whether an uplift was accepted, how long before a release
manager decided to accept or reject an uplift request), the
developer assigned to an issue, and the component(s) affected
by an issue.

4) Computing Metrics: To capture the characteristics of
patches that were uplifted, we computed the 22 metrics
described in Table I. These metrics correspond to the following
five dimensions:
Developer experience and participation metrics. Our ra-
tionale for computing these metrics is that patches written
or reviewed by experienced developers may have a higher

https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis

Table I: Metrics used to compare patches.

Metric mi Description

Developer experience and participation metrics (m1 - m5)

Developer
experience

1 Number of previous commits of the patch developer.

Reviewer
experience

2 Number of previous commits of the patch reviewer.

Number of
comments

3 Number of comments in the issue report.

Comment
words

4 Average number of words in the comments to an issue.

Review
duration

5 Time period (in days) from a patch’s submission until
its approval.

Uplift process metrics (m6 - m8)

Landing delta 6 Time elapsed (in days) between when the patch was
applied to the Nightly version and when the developer
asked for approval of an uplift.

Response delta 7 Time elapsed (in days) between when the developer
asked for approval for the uplift and when the release
manager decided (approved or rejected).

Release delta 8 Time elapsed (in days) between when the developer
asked for approval for the uplift and the date of the
following release.

Sentiment metrics (m9 - m10)

Developer
sentiment

9 The highest negative sentiment score in the developers’
comments on an issue.

Owner
sentiment

10 The highest negative sentiment score in module owners’
comments on an issue.

Code complexity metrics (m11 - m19)

Patch size 11 Number of lines in a patch (excluding test patches).

Test patch size 12 Number of lines in a test patch.

Prior changed
times

13 Number of previous commits that modified the same
files that the patch is modifying.

LOC 14 Average lines of code in all classes in a patch.

Average
cyclomatic

15 Average cyclomatic complexity of the functions in a
class.

Number of
functions

16 Average number of classes’ functions in a patch.

Maximum
nesting

17 Average maximum level of nested functions in all
classes in a patch.

Comment
ration

18 Average ratio of the lines of comments over the total
lines of code in all classes in a patch.

Module
number

19 Number of modules involved by a patch.

Code centrality (SNA) metrics (m20 - m22)

PageRank 20 Time fraction spent to “visit” a class in a random walk
in the call graph.

Betweenness 21 Number of classes passing through a class among all
shortest paths.

Closeness 22 The average length of the shortest path between a class
and all other classes.

chance to be accepted for uplift, and may be less fault-prone.
Long comments and long review durations may indicate the
complexity of an issue and developers’ uncertainty about it,
which may explain its rejection or fault-proneness.
Uplift process metrics. We compute metrics capturing the
uplift process for the following reasons. Release managers may
be more inclined to accept patches with higher landing delta
(as the more time a patch has been on the Nightly channel, the
more time it has been tested by Nightly users). Patches with
low release delta are likely to be refused uplifts, since patches

that are developed closer to the date of release might pose
more risk (as there is less time to fix potential regressions).
Patches with low response delta may also be rejected (since
developers have less time to evaluate the risks associated with
the patch). Patches with low landing delta, release delta, and
low response delta may also lead to faults if uplifted.
Sentiments. We compute sentiment metrics because we be-
lieve that sentiments can affect uplift decisions and their
success rate. From each studied issue, we extract developers’
comments to compute their sentiments. We leverage the senti-
ment mining tool, SentiStrength [7], to estimate the extent of
developers’ positive and negative sentiments toward a specific
issue. As one of the state-of-the-art sentiment mining tool,
SentiStrength is easy to apply, and it has achieved a reasonable
performance in prior works [7]. In addition to developers’
sentiments, we also computed module owners’ sentiments.
Code Complexity. Previous works, such as [8], have shown
that complex code is likely to introduce faults. We calculate
code complexity metrics to understand how uplifting decisions
and their success are affected by the complexity of the uplifted
patches. We extract the files changed in each patch and
use the static code analysis tool Understand [9] to calculate
the following complexity metrics on the files: lines of code
(LOC), average cyclomatic complexity, number of functions,
maximum nesting, and ratio of the comment lines over the
total code lines.
Code centrality (SNA) metrics. Kim et al. [8] observed that
functions close to the centre of a call graph are likely to
experience more faults. Hence, we compute metrics capturing
the centrality of functions involved in uplifted patches and
uplifted patch candidates. We use the network analysis tool,
igraph [10], in combination to Understand [9], as in [11], to
compute the following Social Network Analysis (SNA) met-
rics: PageRank, betweenness, and closeness. When computing
complexity and SNA metrics, we only consider the C/C++
code since Firefox contains 86% of C/C++ code. Computing
code complexity and SNA metrics is a very time-consuming
task. Instead of computing the metrics for each patch, we
compute metrics by releases and map a given patch to its
latest major release as in our previous work [11]. To make
the metric results as precise as possible, we consider all major
releases from Firefox 32.0 until Firefox 48.0, which cover the
system’s history from September 2014 until August 2016.

IV. CASE STUDY RESULTS

This section presents and discusses the results of our two
research questions. For each question, we discuss the motiva-
tion, the approach designed to answer the question, and the
findings. To get a deeper insight of the patch uplift process,
we perform both quantitative and qualitative analyses for each
research question.

RQ1: What are the characteristics of patches that are uplifted?

Motivation. This question aims to understand the charac-
teristics of patches that are uplifted. We are particularly
interested in understanding what differentiates patch uplifts

Table II: Accepted vs. rejected patch uplift candidates.

Channel Metric Accepted Rejected p-value Effect size

Aurora Comment ratio 0.1 0.2 0.03 small

Landing delta 0.4 3.0 0.02 small

Response delta 0.9 2.4 1.80e-05 medium

Beta LOC 529.0 1,046.8 9.27e-04 small

Cyclomatic 2.0 3.0 0.04 negligible

of functions 20.0 35.2 9.62e-04 small

Comment ratio 0.1 0.2 8.86e-05 small

Betweenness 2,789.0 20,586.3 0.01 negligible

PageRank 1.4 1.7 0.01 negligible

Max. nesting 2.3 3.0 7.72e-03 negligible

Module number 1.0 1.0 7.13e-03 negligible

Response delta 0.7 1.0 6.28e-04 small

Release Response delta 0.02 3.1 1.39e-12 large

among different channels. Although Mozilla has published
rules to guide the patch uplift process [12], it is unclear if
and how these rules are enforced in practice. The answer to
this research question can help discover hidden factors that
affect the uplift process, and help software practitioners make
this process more predictable.

1) Quantitative Analysis.
Approach. Using the metrics from Table I, we statistically

compare 22 numerical characteristics of patch uplift candidates
that were accepted and those that were rejected. As Mozilla
release managers take a whole issue report into account during
the uplift process (see Section III-A), we calculate the average
values of the code complexity and SNA metrics for all patches
in a subject issue report.

For each of the 22 metrics mi, we formulate the following
null hypothesis:
H01

i : there is no difference between the values of mi for
patch uplift candidates that were accepted and those that were
rejected, where i ∈ {1, . . . , 22}

We use the Mann-Whitney U test [13] to accept or re-
ject these hypotheses. The Mann-Whitney U test is a non-
parametric statistical test that measures whether two inde-
pendent distributions have equally large values. We use a
95% confidence level (i.e., α = 0.05) to accept or reject the
hypotheses. Since we perform more than one comparison on
the same dataset, to reduce the chances of obtaining false-
positive results, we use Bonferroni correction [14] to control
the familywise error rate. Concretely, we calculate the adjusted
p-value, which is multiplied by the number of comparisons.
Whenever we obtain statistically significant differences be-
tween metric values, we compute the Cliff’s Delta effect
size [15] to measure the magnitude of the difference. Due
to the page limit, we will only report the metrics for which
there is a statistically significant difference between accepted
and rejected patch uplift candidates.

Results. Table II summarizes differences between the char-
acteristics of patches that were accepted for an uplift and those
that were rejected. We show the median value of accepted

and rejected uplifts for each metric, as well as the p-value of
the Mann Whitney U test and the effect size. For all three
channels, rejected uplifts have longer response delta (m7)
than accepted uplifts. We attribute this outcome to the high
complexity of the rejected patches, which required longer time
for risk assessment. We summarize the different results among
the channels as follows:

• Aurora: We observe that rejected uplift requests have
significantly higher landing delta; this might imply that
the rejected patches are landing at the end of the Aurora
cycle, and so have less time for stabilization. Also,
rejected uplift requests have higher ratio of comment
in the source code, although we expected that a higher
comment ratio might help release managers understand
the code. A high comment ratio could also indicate a
high code complexity. Release managers may hesitate to
release patches with complex code ahead of schedule.

• Beta: Compared to accepted patches, rejected patches
tend to have higher code complexity in terms of LOC
and number of functions, as well as higher SNA values
in terms of PageRank. This result is expected, because
we assume that complex code and code connected with
many other classes is less likely to be accepted for urgent
releases. As in the Aurora channel, rejected patches also
contain code with higher ratio of comment. Although
accepted and rejected patches have significant differences
on some other metrics such as cyclomatic complexity, the
magnitude of these differences is negligible.

According to the results, we can only reject H01
7 ,

meaning that the response delta can significantly affect
the decision to uplift a patch or not. The impact of other
metrics, including code complexity and SNA metrics, is
channel dependent.

We quantified the acceptance rate of uplift requests for
different components and observed that certain components
enjoy a 100% acceptance rate (perhaps because they rarely
experienced faults); while other components have lower accep-
tance rates (perhaps because they are inherently more complex,
e.g., the implementation of JavaScript, or because release
managers have had bad experience with some of them). This
difference between the acceptance rates of components is more
pronounced in the Release channel. Some components that
are involved in a large number of uplifts (e.g., Audio/Video,
Graphics, and DOM components) also have the lowest accep-
tance rate. Perhaps developers of those components tend to
ask for uplifts more often, prompting a negative reaction from
release managers who may feel that they take too many risks.

2) Qualitative Analysis. Since we did not observed signif-
icant structural differences between the code of patch uplift
candidates that were rejected and those that were accepted,
we conducted a qualitative study to identify and compare the
reasons behind successful and failed patch uplift requests.

Approach. From 2,384 uplifted issues in the Beta channel
and 231 uplifted issues in the Release channel, we randomly
choose respectively 459 and 154 issues as our samples (which

Table III: Uplift reasons and descriptions (abbreviations are
shown in parentheses).

Reason Description

Security Security vulnerability exists in the code.

Crash Program unexpectedly stops running.

Hang Program keeps running but without response.

Performance
degradation (perf)

Functionalities are correct but response is slow or delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong
functionality (func)

Incorrect functionalities besides rendering issues.

Web incompatibil-
ity (web comp)

Program does not work correctly for a major website or
many websites due to incompatible APIs or libraries, or a
functionality, which was removed on purpose, but is still
used in the wild.

Add-on or plug-in
incompatibility
(addon comp)

Program does not work correctly for a major add-on/plug-
in or many add-ons/plug-ins due to incompatible APIs or
libraries, or a functionality, which was removed on purpose,
but is still used in the wild.

Compile Compiling errors.

Feature Introduce or remove features, including support adding.

Improvement
(improve)

Minor functional or aesthetical improvement.

Test-only problem
(test)

Errors that only break tests.

Other Other uplift reasons, e.g., data corruption and license incom-
patibility.

correspond to a confidence level of 95% and a confidence
interval of 5%). Inspired by Tan et al.’s work [16], we classify
the uplift reasons into 14 categories based on their (potential)
impact and detected fault types. Some of Tan et al.’s categories
are too broad, such as incorrect functionality. We break them
into more detailed uplift reasons, e.g., incorrect functionality
is split to incorrect rendering and (other) wrong functionality.
Some of Tan et al.’s categories, such as data corruption,
are with too few occurrences. We combine them into the
“other” category. Table III shows the uplift reasons used in
our classification. We perform a card sorting on each of the
sampled issues. By studying the issue report, the first and the
second authors of the paper individually classified each issue
into one or multiple uplift reasons (some uplift may be due
to multiple reasons). Then we compared their classifications
and resolved conflicts through discussions. We discussed each
conflict until an agreement was reached.

To connect uplift reasons with the risk of regression, we
will show the distribution of the faulty uplifts for each uplift
reason.

Moreover, to identify organization factors that play a role in
patch uplift decisions, we interviewed three of the current five
Mozilla release managers (the other remaining two are new to
the role) one at a time (to avoid them influencing each other),
asking them the following questions:

1) Which factors do you take into account when deciding
about an uplift?

2) Are there differences in how you handle uplifts in
different channels, and what are the differences?

3) How do you decide which developers you can trust?

0

50

100

fun
c

cra
sh

se
cu
rity

we
b_
co
mp

fea
tur
e

ren
de
rin
g

im
pro
ve pe

rf
oth
er

ha
ng

co
mp
ile tes

t

ad
do
n_
co
mp

Clean Faulty

Figure 3: Distribution of uplift reasons in Beta.

0

20

40

60

fun
c

cra
sh

we
b_
co
mp

se
cu
rity

fea
tur
e

pe
rf

ren
de
rin
g

co
mp
ile

oth
er

ha
ng tes

t

ad
do
n_
co
mp

Clean Faulty

Figure 4: Distribution of uplift reasons in Release.

We also reported the results of our quantitative analysis to
them and asked for their feedback.

Results. Figures 3 and 4 show the distribution of the uplift
reasons, as well as the distribution of fault-inducing uplifts
and clean uplifts for each reason. We observe that, in the
Beta channel, most patches are uplifted because of a wrong
functionality, crash, security vulnerability, incompatibility with
some major websites, or to introduce/remove a feature. Most
regressions are introduced by the uplifts that resolved wrong
functionalities, crash, and security issues. For some uplift
reasons, including improvement, resolving add-on/plug-in in-
compatibility and compiling errors, few patches lead to faults
in our studied sample. However, a high percentage of patches
resolving performance and rendering problems introduced new
regressions.

In the Release channel, we observe the same top five uplift
reasons. Compared to the Beta channel, there are fewer regres-
sions; implying that these uplifted patches may have been more
carefully scrutinized, the rules for approval on the Release
channel being more strict. The fault-inducing patches only
concentrated on five uplift categories: crash, hang, security,
performance degradation, and incorrect rendering. Especially,
most patches for incorrect rendering lead to future faults.
These results suggest that, although developers prudently uplift
patches in the Release channel, they still need to carefully
review patches belonging to the aforementioned categories in
order to prevent delivering faults to users.

Through the interview, we learn that release managers take
into account several factors when deciding whether to approve
or reject a patch uplift request.

1) Importance of the issue. This is measured through the
impact that rejecting the uplift would have on users.

2) Risk associated with the patch. Release managers share
the same view on the risks. They generally trust de-
velopers’ words, unless they have had bad experiences
with them (e.g., developers who caused regressions and
did not fix them); they evaluate the risk of the patch by
looking at its size and complexity, the presence/absence
of automated tests, the reviewers of the patch. In case of
doubts, release managers consult other release managers
or engineering managers to get a clearer picture.

3) Timing of the uplift in the Aurora/Beta cycle. They tend
to trust more patches that have been in Nightly for some
time and patches that are far from the next release date.
They almost always accept uplifts requested during the
first weeks of the Aurora cycle.

4) Verification of the patch. In particular for more stable
channels, they make sure that the patch has been verified
to actually fix the problems it was supposed to fix. If
needed, they ask QA to manually verify the patch. If it
is a patch that fixes a Nightly crash, before uplifting the
patch to Aurora, they will verify if users are no longer
reporting the crash.

They remarked that the uplift bar gets higher as they are get-
ting closer to release. After the middle point of the Beta cycle,
they only accept patches fixing high security issues, high-
volume crashes, severe recent regressions, severe performance
issues or memory leaks.

We presented the release managers with the results of
our quantitative and qualitative analysis and collected the
following observations.
They found that the response delta information is in-
teresting. After thinking about it, they all gave us similar
replies. When they are evaluating a complex issue and are
still undecided, they will not make the call immediately. One
release manager said that “when I reject something, I won’t
make the call immediately. I will think about it before doing
it, in case I change my mind or new facts are coming in the
equation”.
Regarding the landing delta, they were surprised, as they
thought they were more likely to accept patches with a higher
landing delta (that is, patches that have been in Nightly for
longer). They have also said that they are almost always
accepting patches during the first four weeks of the Aurora
cycle, which would explain this discrepancy (as those patches
have a small landing delta).

The interviewed release managers also told us that they take
into account the fault-proneness of components when making
uplift decisions; which is in line with what we found (some
components have a smaller acceptance rate). One release
manager told us that “some components always come out as
causing the most regressions, e.g., graphics layers, DOM”.
Regarding the trust in developers, they all mentioned the
assessment of risk as one of the first factors. One release
manager explained that “when they seem really overconfident
or aren’t telling me the whole story I lose some trust”,

another one stated that “some developers are taking a lot of
risks, some other less and are super reactive to fix potential
fallout”. This finding is consistent with the uplift criteria
followed at Facebook [17], where release managers tend to
trust developers who introduced less regressions in the past.

Regarding uplift reasons, release managers were not sur-
prised that test and compile changes are less frequent than
others. They argued that these kinds of changes are really
hard to move from the Nightly channel to a stabilization
channel (build or test failures, unless they happen on really
particular configurations, are noticed as soon as a patch is
applied, since tests are run for every changeset). For the same
reasons, they were not surprised that the uplift regressions are
rarely compile-related.

Release managers argued that the information about the
distribution of uplift reasons is useful for their future decision-
making. They were initially surprised to see that crash and
security-related uplifts often caused regressions, but they
thought that the urgency of those fixes might degrade their
quality. They were also interested in the results regarding the
categories where a high proportion of uplift patches caused
regressions (e.g., performance uplifts). They said that they
will start to take this information into account when deciding
about uplifts, and will be more careful with the uplifts in those
categories.

RQ2: What are the characteristics of uplifted patches that
introduced faults in the system?

Motivation. In Firefox’ Aurora, Beta and Release channels, we
found respectively 8.8%, 8.3%, and 7.9% of uplifted patches
that introduced regressions in the system. These patches not
only decrease the users-perceived software quality, but also
increase development costs, since developers, testers and re-
lease managers have to rework the faulty patches. In RQ1, we
have identified some characteristics of patches that are taken
into account by Mozilla release managers during patch uplifts.
In this research question, we are interested in identifying the
characteristics of uplifted patches that introduced faults in the
system.

1) Quantitative Analysis.
Approach. We apply the SZZ algorithm (described in Sec-

tion III-B2) on all fault-fixing changes to identify uplifted
patches that introduced a fault in the system. Next, we classify
the uplifted patches into two groups: fault-inducing uplifts
and clean uplifts. We use the 22 metrics listed in Table I to
assess the differences between these two groups. For each (mi)
metric, we test the following hypothesis:
H02

i : there is no difference between the values of mi for
uplifted patches that introduced a fault in the system and those
that did not.

Similar to RQ1, we use the Mann-Whitney U test and
Cliff’s Delta effect size to accept or reject the hypotheses, and
assess the magnitude of the differences between fault-inducing
uplifts and clean uplifts. We also test the hypotheses for all
three channels.

Table IV: Fault-inducing Uplifts vs. Clean uplifts.

Channel Metric Faulty Clean p-value Effect size

Aurora Patch size 155.0 34.0 5.59e-65 large

Prior changes 362.5 164.0 3.80e-10 small

LOC 903.6 457.4 2.23e-06 small

Cyclomatic 2.5 2.0 1.08e-06 small

of functions 34.3 17.0 2.25e-06 small

Max. nesting 2.7 2.0 5.14e-04 negligible

Comment ratio 0.2 0.1 4.00e-15 small

Module number 2.0 1.0 2.99e-24 small

Closeness 1.5 1.2 2.78e-13 small

Betweenness 45,221.9 880.7 2.65e-14 small

PageRank 1.7 1.4 1.95e-15 small

of comments 26.0 20.0 1.76e-09 small

Developer exp. 28.5 10.0 1.19e-18 small

Reviewer exp. 9.0 2.0 6.63e-09 small

Comment words 10.0 2.0 9.08e-07 small

Developer senti. -3 -3 8.92e-04 negligible

Owner sentiment -2 -1 1.66e-04 negligible

Beta Patch size 141.0 32.0 6.44e-33 large

Prior changes 268.0 156.5 1.02e-03 small

LOC 895.5 476.3 1.66e-03 small

Cyclomatic 2.5 2.0 3.69e-03 small

of functions 37.0 18.0 3.13e-03 small

Max. nesting 2.7 2.2 0.01 negligible

Comment ratio 0.2 0.1 4.61e-05 small

Module number 2.0 1.0 7.45e-12 small

Closeness 1.6 1.2 2.87e-07 small

Betweenness 35,661.7 1,327.8 6.00e-08 small

PageRank 1.7 1.4 1.08e-06 small

of comments 28.0 22.0 1.18e-04 small

Comment words 8.0 3.0 0.04 negligible

Developer exp. 29.0 10.0 1.33e-08 small

Reviewer exp. 10.0 2.0 3.35e-05 small

Owner sentiment -2 -1 4.14e-03 small

Release Patch size 108.0 27.0 2.07e-03 large

Results. Table IV summarizes differences between the char-
acteristics of uplifted patches that introduced a fault in the
system and those that did not. We observe that fault-inducing
uplifts have significantly larger patch size (m11) than clean
ones, across all three channels. The effect size of the difference
is large. This implies that patches with larger modifications are
more likely to introduce a regression if uplifted. We observed
the following on the different channels:

• On Aurora and Beta channels, fault-inducing uplifts tend
to have more complex code in terms of LOC, cyclomatic
complexity, number of functions, and number of modules.
These patches often contain classes that are connected to
many other classes, in terms of closeness, betweenness
and PageRank. Fault-inducing uplifts also tend to have
higher comment ratios and tend to change files that were
changed more frequently. Interestingly, fault-inducing up-
lifts are frequently submitted by developers or reviewers
with high experience. Fault-inducing uplifts also have a

larger amount of comments than clean uplifts. A large
number of comments may be a sign that developers
are struggling with the patch, which may explain the
high fault-proneness. Although fault-inducing uplifts and
clean uplifts also display other significant differences (as
shown in Table IV), the magnitude of these differences
is negligible.

• For the Release channel, we do not observe a significant
difference between fault-inducing uplifts and clean uplifts
for the above metrics.

Overall, we reject H02
11 , i.e., fault-inducing uplifts have

larger patch size than clean uplifts. Release managers
should pay attention to large patches and reviewers should
scrutinize them carefully. Although the effect of other
characteristics is channel dependent, in Aurora and Beta,
we observe that patches with high complexity and cen-
trality tend to lead to faults. Uplift requests submitted by
experienced developers and reviewers also tend to lead to
regressions.

Similar to RQ1, we examined patch uplifts per component,
and observed that patch uplifts affecting certain components
(e.g., Graphics component) are more likely to cause regres-
sions than others. Some of the components with the highest
fault-inducing rates also have a low approval rate; probably
because the release managers were acting based on their
previous experiences with those components (for example, the
Web Audio component). Components like the Audio/Video,
which are involved in multiple patch uplift operations, also
have the highest fault-inducing rates; these components would
be inherently more prone to faults because of their complexity,
or technical debt.

We made a similar observation regarding developers’ sub-
mitting uplift requests. Many developers who submitted mul-
tiple uplift requests appear in the list of developers with high
fault-inducing rates; perhaps, by uplifting more patches, they
are taking more risks.

2) Qualitative Analysis. To understand the root cause of faults
in uplifted patches, we conduct a qualitative study.

Approach. We manually examined uplifted patches (from
the samples selected in RQ1) that introduced faults, and
classified the reasons behind the faults. Inspired by the work
of Tan et al [16], we defined seven possible root causes for
uplift faults (as shown in Table V). We identified respectively
132 and 17 fault-inducing uplifts from the Beta and Release
samples chosen in RQ1, and performed a card sorting to
classify each of the faults into one or multiple causes. As
in RQ1, the first and the second authors individually read
the issue reports and their fault-fixing patches to understand
the root causes of the faults (i.e., the reason why their
corresponding uplifted patches caused the faults) and classified
these root causes along our seven categories. Similar to RQ1,
disagreements were resolved through discussions.

We also interviewed release managers, asking them the
following question: What are the characteristics of fault-

Table V: Fault reasons and descriptions.

Reason Description

Memory Memory errors, including memory leak, overflow, null
pointer dereference, dangling pointer, double free, uninitial-
ized memory read, and incorrect memory allocation.

Semantic Semantic errors, including incorrect control flow, missing
functionality, missing cases of a functionality, missing fea-
ture, incorrect exception handling, and incorrect processing
of equations and expressions.

Third-party Errors due to incompatibility of drivers, plug-ins or add-ons.

Concurrency Synchronization problems between multiple threads or pro-
cesses, e.g., incorrect mutex usage.

Compile Compile-time errors.

Other Other errors.

0

25

50

75

100

semantic memory third−party concurrency compile other

Beta Release

Figure 5: Reasons of fault-inducing uplifts.

inducing patches that you are not currently taking enough into
account but could be considered in the future?

Results. Figure 5 depicts the distribution of the reasons why
fault-inducing uplift introduced regressions. In both channels,
semantic and memory-related errors are dominant root causes
of the uplift regressions. With a detailed check on the patches,
we find that many memory errors are due to null pointer
dereference and memory leak. In addition, incompatibility
of plug-ins and drivers also cause uplift regressions in both
channels. Concurrency issues are ranked as a popular cause
for Beta’s uplift regressions, but we do not find any example
of this category in the Release channel. In general, our results
suggest that, when uplifting a patch, release managers need
to carefully check for potential faults on the program’s
semantic meaning, memory operations, synchronization,
and third-party extension’s compatibility.

In the interview, all the release managers agreed that
it would be beneficial for them to have more detailed
information about the complexity of the patches they are
asked to evaluate and more information about the history
of the components involved in these patches. This resonates
with our findings. Release managers were surprised to see that
fault-inducing patches were more likely to be written by more
experienced developers and reviewed by more experienced
reviewers. They guess that these developers/reviewers are
assigned to more complex tasks with more complex solutions.
A release manager told us that “if you call in the big guns,
then it’s a warning sign”.

The fault categorization was also interesting for the release
managers, who told us that Mozilla is about to employ more
static analysis tools (e.g., Coverity [18]) and to move some

of their code from C++ to a safer language (e.g., Rust). It is
promising for them to see how many memory and concurrency
faults can be avoided by using these techniques, and how many
semantic and third-party faults can be reduced by enhancing
code review or testing efforts.

V. DISCUSSION

According to the results of RQ1 and RQ2, there are
statistically significant differences between the characteristics
of uplifted patches that introduced regressions and those that
were integrated successfully (i.e., clean uplifts that did not
induce faults). Also, fault-inducing uplifts are in the majority
of cases uplifts that were meant to resolve wrong function-
alities, crashes, security vulnerabilities, and incompatibilities
with websites. Furthermore, incorrect semantic code and mem-
ory operations are the most important root causes of uplift
regressions.

We believe that release management teams could leverage
these findings to build classifiers capable of automatically
assessing the risk associated with patch uplift candidates and
recommend patches that can be uplifted safely.

Exploring the possibility of building such classifiers is part
of our future work agenda.

VI. THREATS TO VALIDITY

Construct validity threats are concerned with the relation-
ship between theory and observation. Previous studies [19],
[8] suggested that complex code is a good indicator of fault-
proneness. We confirm this point in this study. However,
we found that fault-inducing patches are more likely to be
submitted by experienced developers, which contradicted our
expectations. We attribute this outcome to the fact that ex-
perienced developers are often assigned to difficult issues,
whose resolution tend to be more complex. Also, release
managers might overlook risks associated to patches submitted
by experienced developers, as these developers are often more
trusted than others.

Internal validity threats concern factors that may affect a
dependent variable and were not considered in the study. We
paid attention not to violate the assumptions of the statistical
tests that are performed in the paper. Specifically, in RQ1
and RQ2, we applied non-parametric tests that do not require
making assumptions on the distribution of our dataset.

Conclusion validity threats concern the relationship between
the treatments and the outcome. Before conducting the case
study, we limited our studied dataset within a duration that
covers consecutive series of relatively stable periods on all the
three uplift channels. In addition, we used a keyword matching
heuristic to identify fault-related issues. We manually validated
a random sample of 380 issues. All the authors of this paper
participated in the validation. Whenever there were diverging
opinions, we set up a meeting and discussed the issue until a
consensus was reached. As a result, we found that our heuristic
can achieve a precision of 87.3% and a recall of 78.2%,
when identifying fault-related issues. Moreover, we performed
a manual classification of the uplift reasons and the root causes

of uplift regressions. To mitigate potential bias that may result
from our subjective opinions, we also discussed on each of our
classification conflicts until reaching a consensus. However, as
any other taxonomic study, we cannot guarantee a 100% of
accuracy on our classification results. Future replications are
welcomed to validate our work. Another issue on the manual
classification is that, although we randomly chose our samples
by applying a confidence level of 95% and a confidence
interval of 5%, our samples might not precisely reflect the
distributions of the uplift reasons and–or root causes of uplift
regressions on the whole Firefox dataset. Further investigations
on larger data sets are desirable.

External validity threats are concerned with the generaliz-
ability of our results. In this paper, we only studied Mozilla
Firefox. First, Mozilla Firefox is the most studied system for
issues related to rapid releases; moreover, the system’s data
are publicly available. We also have the opportunity to per-
form both quantitative and qualitative analyses (including the
interviews with release managers) on this system. However, we
should recognize that our findings may not be generalizable to
other systems. In the future, we plan to collaborate with other
software organizations, to validate and extend the results of
this work. In addition, more studies on other systems with
other programming languages are suitable to further validate
our results. To facilitate future replication studies, we share
our datasets and scripts at: https://github.com/swatlab/uplift-
analysis.

VII. RELATED WORK

Patch uplift is an activity performed during the release
engineering process. Hence, in this section, we present and
discuss relevant literature on release engineering.

Release engineering encompasses all the activities aimed
at “building a pipeline that transforms source code into an
integrated, compiled, packaged, tested, and signed product that
is ready for release” [20].

Since the adoption of the rapid release model [2] by Mozilla
in 2011, a plethora of studies have focused on the impact of
rapid release strategies on software quality. Khomh et al. [2]
compared crash rates, median uptime, and the proportion
of post-release bugs between the versions of Firefox that
followed a traditional release cycle and those that followed
a rapid release cycle. They observed that short release cycles
do not induce significantly more bugs. However, compared
to traditional releases, users experience bugs earlier during
software execution. Nevertheless, they also observed that post-
release bugs are fixed faster under the rapid release model.
Da Costa et al. [21] studied the impact of Mozilla’s rapid
release cycles on the integration delay of addressed issues.
They found that, compared to the traditional release model,
the rapid release model does not deliver addressed issues to
end users more quickly, which is contrary to expectations.

Another important aspect of release engineering that has
been investigated by the community is the integration of urgent
patches that are used to fix severe problems, such as frequent
crashes or security bugs, or to introduce important features.

Urgent patches break the balance between new feature work
and software quality, and hence could lead to faults and
failures. Hassan et al. [22] investigated emergency updates
for top Android apps and identified eight patterns along the
following two categories: “updates due to deployment issues”
and “updates due to source code changes”. They suggested
to limit the number of emergency updates that fall in these
patterns, since they are likely to have a negative impact on
users’ satisfaction. In a recent work, Lin et al. [23] empirically
analyzed urgent updates in 50 most popular games on the
Steam platform, and observed that the choice of the release
strategy affects the proportion of urgent updates, i.e., games
that followed a rapid release model had a higher proportion
of urgent patches in comparison to those that followed the
traditional release model. Rahman et al. [24] examined the
“rush to release” period on Linux and Chrome. They observed
that experienced developers are often allowed to make changes
right before stabilization occurs and these changes are added
directly to the stabilization line. They also found that there is
a rush in the number of commits right before a new release
is added to the stabilization channel, to add final features. In
a following work, Rahman et al. [25] observed that feature
toggles [26] can effectively turned off faulty urgent patches,
which limits the impact of faulty patches.

To the best of the authors’ knowledge, none of these prior
works has empirically investigated how urgent patches in the
rapid release model affect software quality in terms of fault-
proneness, and how the reliability of the integration of urgent
updates could be improved. This paper fills this gap in the
literature by investigating the reliability of the Mozilla’s uplift
process, since uplifted patches are urgent updates.

VIII. CONCLUSION

Mozilla follows a rapid release model, which uses 18 weeks
to deliver fault fixes and new features to users. Frequently,
certain patches that fix critical issues, or implement high-value
features are promoted directly from the development channel
to a stabilization channel, because they are too urgent and
cannot wait for the next release train. This practice, known
as patch uplift, is risky because the time allowed for the
stabilization of the uplifted patches is short. In average, 8%
of uplifted patches introduced a regression in the code of
Firefox. In this paper, we investigated the decision making
process of patch uplift at Mozilla and observed that release
managers are more inclined to accept patch uplift requests
that concern certain specific components, and–or that are
submitted by certain specific developers. We examined the
characteristics of uplifted patches that introduced regressions
in the code and found that they are more complex than
clean uplifts, and they tend to change a higher number of
lines of code. Most regressions are caused by patch uplifts
aimed at fixing wrong functionalities and crashes. The most
common root causes of faults in uplifted patches are semantic
and memory errors. Reviewers and release managers should
carefully inspect complex patches before allowing their uplift.

https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis

REFERENCES

[1] “A. Laforge. Chrome release cycle. Job title: Technical Program Man-
ager (Chrome) at Google,” http://www.slideshare.net/Jolicloud/chrome-
release-cycle, 2016, online; Accessed 06 February 2016.

[2] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases
improve software quality? An empirical case study of Mozilla Firefox,”
in Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories (MSR). IEEE, 2012, pp. 179–188.

[3] “Mozilla Tree Sheriffs,” https://wiki.mozilla.org/Sheriffing, 2017, online;
Accessed February 1st, 2017.

[4] “JIRA,” https://jira.atlassian.com/, 2017, accessed March 30th, 2017.
[5] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce

fixes?” in ACM sigsoft software engineering notes, vol. 30, no. 4. ACM,
2005, pp. 1–5.

[6] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
of the 29th International Conference on Software Maintenance (ICSM).
IEEE, 2003, pp. 23–32.

[7] T. Mike, B. Kevan, P. Georgios, C. Di, and K. Arvid, “Sentiment in short
strength detection informal text,” JASIST, vol. 61, no. 12, pp. 2544–2558,
2010.

[8] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and S. Park,
“Which crashes should I fix first?: Predicting top crashes at an early
stage to prioritize debugging efforts,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 430–447, 2011.

[9] “Understand tool,” https://scitools.com, 2016, online; Accessed March
31st, 2016.

[10] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5, pp.
1–9, 2006.

[11] L. An and F. Khomh, “An empirical study of highly-impactful bugs in
Mozilla projects,” in Proceedings of the IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2015.

[12] “Mozilla uplift rules,” https://wiki.mozilla.org/Release Management/
Uplift rules, 2016, online; Accessed February 5th, 2017.

[13] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods, 3rd ed. John Wiley & Sons, 2013.

[14] A. Dmitrienko, G. Molenberghs, C. Chuang-Stein, and W. Offen,
Analysis of Clinical Trials Using SAS: A Practical Guide. SAS

Institute, 2005. [Online]. Available: http://www.google.ca/books?id=
G5ElnZDDm8gC

[15] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.

[16] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical Software Engineering, vol. 19,
no. 6, pp. 1665–1705, 2014.

[17] “Keynote of the 2014 Release Engineering conference,” https://www.
youtube.com/watch?v=Nffzkkdq7GM, 2014, online; Accessed March
30th, 2017.

[18] “Coverity tool,” http://www.coverity.com, 2017, online; Accessed March
31st, 2017.

[19] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2013.

[20] B. Adams, S. Bellomo, C. Bird, T. Marshall-Keim, F. Khomh, and
K. Moir, “The practice and future of release engineering: A roundtable
with three release engineers,” IEEE Software, vol. 32, no. 2, pp. 42–49,
2015.

[21] D. A. da Costa, S. McIntosh, U. Kulesza, and A. E. Hassan, “The
Impact of Switching to a Rapid Release Cycle on Integration Delay of
Addressed Issues: An Empirical Study of the Mozilla Firefox Project,”
in Proceedings of the 13th International Conference on Mining Software
Repositories (MSR), 2016, pp. 374–385.

[22] S. Hassan, W. Shang, and A. E. Hassan, “An empirical study of
emergency updates for top android mobile apps,” Empirical Software
Engineering, pp. 1–42, 2016.

[23] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the urgent updates of
popular games on the steam platform,” Empirical Software Engineering,
pp. 1–32, 2016.

[24] M. T. Rahman and P. C. Rigby, “Release stabilization on linux and
chrome,” IEEE Software, vol. 32, no. 2, pp. 81–88, 2015.

[25] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams, “Feature
toggles: practitioner practices and a case study,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 201–211.

[26] “Feature toggle,” https://martinfowler.com/bliki/FeatureToggle.html,
2017, online; Accessed March 22nd, 2017.

http://www.slideshare.net/Jolicloud/chrome-release-cycle
http://www.slideshare.net/Jolicloud/chrome-release-cycle
https://wiki.mozilla.org/Sheriffing
https://jira.atlassian.com/
https://scitools.com
https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Release_Management/Uplift_rules
http://www.google.ca/books?id=G5ElnZDDm8gC
http://www.google.ca/books?id=G5ElnZDDm8gC
https://www.youtube.com/watch?v=Nffzkkdq7GM
https://www.youtube.com/watch?v=Nffzkkdq7GM
http://www.coverity.com
https://martinfowler.com/bliki/FeatureToggle.html

	I Introduction
	II Mozilla Patch Uplift Process
	III Case Study Design
	III-A Data Collection
	III-B Data processing
	III-B1 Identification of Fault-related Issues
	III-B2 Identification of Fault-inducing Patches
	III-B3 Mining Issue Reports
	III-B4 Computing Metrics

	IV Case Study Results
	V Discussion
	VI Threats to Validity
	VII Related Work
	VIII Conclusion
	References

